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(December 20, 1995)

We report on a search for right-handed W bosons (WR). We used data collected with the

D� detector at the Fermilab Tevatron p�p collider at
p
s =1.8 TeV to search for WR decays into

an electron and a massive right-handed neutrino W�

R
! e�NR. Using the inclusive electron data,

we set mass limits independent of the NR decay: mWR
> 650 GeV/c2 and mWR

> 720 GeV/c2 at

the 95% con�dence level, valid for mNR < 1

2
mWR

and mNR � mWR
respectively. The latter also

represents a new lower limit on the mass of a heavy left-handed W boson (W 0) decaying into e�.
In addition, limits on mWR

valid for larger values of the NR mass are obtained assuming that NR
decays to an electron and two jets.
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Right-handedW gauge bosons (WR) are additional in-
termediate vector particles that arise in extensions of
the Standard Model (SM) such as the left-right sym-
metric model (LRM) [1]. In the LRM, an enlarged
SU (2)R � SU (2)L � U (1) symmetry group replaces the
SU (2)L � U (1) group of the SM. As a result of the ad-
ditional symmetry, three new gauge bosons, two charged
W�
R and one neutral Z0, appear along with massive right-

handed neutrinos (NR).
In this Letter, a direct search for WR bosons with

mass greater than 200 GeV/c2 which decay into an elec-
tron (or positron) and a massive right-handed neutrino,
WR ! eNR [2] is reported. The NR is assumed to decay
promptly through the right-handed charged current into
a mode that depends on the mixing angle � between WL

and WR. If the mixing is negligible (no mixing case),
the NR will decay into an electron and an o�-shell WR,
NR ! eW �

R. The right-handed neutrinos from other lep-
ton families are assumed to be at least as massive as the
electron-NR . Therefore, the o�-shell WR can decay only
into quarks, W �

R ! q�q0. On the other hand, if the mixing
is large, the NR decays into an electron and a W boson,
which decays into quarks two thirds of the time. In both
cases the decay chain leads predominantly to a �nal state
with eeqq.
Previous direct searches at hadron colliders yielded the

lower limits mWR
> 261 GeV/c2 [3], valid for any value of

the mass of the right-handed neutrino, and mWR
> 652

GeV/c2 [4], valid only for a light right-handed neutrino
(mNR � mWR

) that does not decay or interact within the
detector. Indirect searches based on low energy phenom-
ena such as � decay, theKL-KS mass di�erence, and neu-
trinoless double beta decay provide additional stringent
lower limits [5]. Limits from direct and indirect searches
depend, however, on the assumed values of the elements
of the mixing matrix V R for the right-handed quarks,
the coupling constant gR, the mass and type (Dirac or
Majorana) of the right-handed neutrinos, and the mix-
ing angle �. The most general limit is mWR

� gL
gR

> 300

GeV/c2 [5].
Two di�erent methods, corresponding to di�erent val-

ues of the ratio Rm = mNR/mWR
, are used for this

search. For Rm <� 1

2
, the products of the NR decay are

not likely to be well separated, making their individual
identi�cation di�cult. Therefore, the transverse momen-
tum spectrum of the WR decay electron, which is ex-
pected to be hard and to have a distinctive Jacobian peak
at (m2

WR
�m2

NR
)=2mWR

, is used as a signature. A search
for such a peak, henceforth referred to as the peak search,
is carried out using the high-pT inclusive electron data.
This method does not discriminate between helicities of
the W boson. Therefore, the peak search is also sensitive
to heavy left-handed W bosons (W 0) which decay into an
electron and an electron neutrinoW 0 ! e�. For Rm >� 1

2
,

the products of the NR decay are likely to be well sepa-

rated, making possible the detection of the exclusive �-
nal state with two electrons and two jets. After requiring
the two electrons to be inconsistent with Z ! ee decay,
the background due to other known physics processes is
small. Therefore, a simple counting experiment, referred
to here as the eejj search, is performed. The analysis pre-
sented here is based on approximately 79 pb�1 of data
collected during two Fermilab Tevatron pp collider runs
at
p
s =1.8 TeV from August 1992 to May 1995.

The D� detector consists of three major subsystems:
a central tracking system with no magnetic �eld, a her-
metic uranium-liquid argon sampling calorimeter, and
a muon magnetic spectrometer. The calorimeter has
�ne longitudinal and transverse segmentation in pseu-
dorapidity (�) and azimuth (�) that allows electromag-
netic showers to be distinguished from jets. It pro-
vides full coverage for j�j � 4 with energy resolu-
tion 15%/

p
E(GeV) for electromagnetic showers and

80%/
p
E(GeV) for hadronic jets. The central and for-

ward drift chambers are used to identify charged tracks
for j�j � 3.1 and to locate the primary vertex. A more
detailed description of the D� detector can be found else-
where [6].
To identify electrons [7], the presence of an isolated

electromagnetic energy cluster with shape consistent
with that of an electron (as determined from test beam
measurements) is required. In addition, an associated
charged track that matches the calorimeter cluster in �

and � and with an ionization in the drift chambers con-
sistent with that of a minimum ionizing particle must
be found. Jets are reconstructed using a cone algorithm
with a cone radius of 0.5 in �-� space.
For the peak search, events were collected using a sin-

gle electromagnetic cluster trigger. O�ine, the inclu-
sive high-pT electron events were selected by requiring an
electron candidate with peT > 55 GeV/c and j�ej < 1:1.
To reduce the multijet background (QCD) from events
with a jet misidenti�ed as an electron, strict electron

identi�cation criteria were imposed. The 101 events with
peT > 100 GeV/c were scanned to search for anomalies;
we discarded one event which was consistent with be-
ing a high energy cosmic ray muon that showered in the
electromagnetic part of the calorimeter, mimicking an
electron.
The primary background in the peak search is due

to highly o�-shell and large-pT W and Z boson pro-
duction. These processes were simulated using a Monte
Carlo (MC) program based on a theoretical calculation
of the bosons' pT [8] and on the bosons' line shape ob-
tained using the PYTHIA [9] MC program, with a simple
detector simulation. The QCD background was modeled
using the collider data.
A simultaneous �t to the transverse mass (mT ) distri-

bution, formed by the electron and the missing transverse
energy E/T , and to the electron transverse momentum

3
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FIG. 1. (a) Electron transverse momentum and (b) trans-

verse mass (formed by the electron and E/
T
) distributions of

the inclusive high-pT electron sample.

(peT ) distribution was performed. A binned maximum
likelihood �t was used to �nd the contributions of the
combined W and Z boson backgrounds and the QCD
background [10]. Figure 1 shows the peT and mT dis-
tributions with their corresponding �ts. The con�dence
level (CL) is 71% for the peT �t and 90% for the mT �t.
The presence of WR ! eNR decays would appear as an
excess in a few consecutive bins in the peT distribution.
No evidence for such an excess is observed.
The acceptance and peT distribution of the signal were

obtained for a grid of points in the (mWR
,mNR ) plane us-

ing PYTHIAMC samples with a detector simulation based
on the GEANT program [11]. The 95% CL upper limit
on the number of WR events was obtained by integrating
the probability of the presence of a WR component in
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boson mass. Limits are shown for three values of theNR mass.
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FIG. 3. 95% CL excluded WR mass region from the peak

search. The lines represent the contours for di�erent values
of the LRM parameters. The diagonal line is the kinematic

limit for the WR ! eNR decay.

the measured peT distribution for every point in the grid.
This was converted into an upper limit on the cross sec-
tion times branching fraction (�B) by normalizing to the
measured W and Z boson production cross sections [12]
using the observed W=Z component in the initial simul-
taneous peT and mT �t and the acceptances as calculated
from MC simulation.
The resulting background subtracted upper limit, in-

cluding the e�ect of systematic uncertainties (dominated
by a 7.6% uncertainty in the W=Z background normal-
ization), is shown in Fig. 2. Also shown is a second order
(�2S) theoretical calculation [13] of �B assuming gR = gL
and V R = V L. The next to leading order MRS(H) [14]
parton distributions were used for the calculation. The
branching fraction B(WR ! eNR) was calculated taking
into account the NR and t-quark masses and assuming
mNe

R
= mN

�

R
= mN�

R
. For small NR mass, this frac-

tion approaches the naive 1

12
value. Figure 3 shows the

corresponding excluded mass region. The contours are
shown for di�erent values of the LRM parameters gR
and V R [15]. The extreme e�ect of varying V R is illus-
trated by displaying the contour for a mixing matrix with
V R
us = 1 (thus V R

ud = 0 for V R unitary), suppressing the
primary ud ! WR production mechanism. Because the
limit from this part of the search was extracted from the
inclusive peT distribution, without additional topological
requirements, it is valid irrespective of the speci�c decay
mechanism for the NR or the W helicity.
For the eejj search, events were selected using a trigger

that required two electromagnetic energy clusters, each
with ET > 20 GeV. After event reconstruction, 22 events
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search for the no mixing case.

had two good isolated electrons with ET > 25 GeV and
two or more jets with ET > 25 GeV within a pseudora-
pidity range j�e;jj < 2:5. Events consistent with Z+jets
production were rejected by demanding that the invari-
ant mass of the two electrons mee be outside the range
70 � mee � 110 GeV/c2. Two events remained in the
sample and were therefore considered WR candidates.
The largest background to the eejj signal is multijet

production (QCD) with two jets misidenti�ed as elec-
trons. To calculate this background, the invariant mass
spectrum of the jet pair with the largest electromagnetic
fraction in events with four or more jets was found. This
distribution was then scaled by a factor determined from
a two-component �t to the inclusive dielectron data us-
ing the dielectron invariant mass spectrum from Z; �

MC and the measured inclusive dijet invariant mass spec-
trum. The background from Z; �+jets production was
estimated by scaling the number of observed events in the
peak of the mee distribution, in events with two or more

TABLE I. Background estimates and event yields for the

eej and eejj samples.

Background Event Yield for 79:0� 4:3 pb�1

Process eej eejj

Z; � 12.84 � 2.31 1.26 � 0.34

tt 0.61 � 0.35 0.43 � 0.16

WW 0.13 � 0.02 0.01 � 0.01
QCD 9.90 � 4.01 1.38 � 0.68

Total 23.48 � 4.64 3.08 � 0.78

Observed 23 2
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FIG. 5. Excluded regions of WR mass at the 95% CL as-

suming gR = gL and V R = V L from the eejj and peak

searches.

additional jets, by the tail-to-peak ratios obtained from
MC. Additional background is due to tt and WW pro-
duction. The yield from tt was obtained using a Monte
Carlo sample with a detailed detector simulation and the
measured 6.4 � 2.2 pb [16] cross section. For the WW

background, a sample of MC events and the theoretical
cross section were used. To verify the background esti-
mation, the yield of the above processes to a �nal state
with two electrons and one or more jets was also calcu-
lated. The background estimates and event yields are
summarized in Table I for the eej and eejj �nal states.
As for the peak search, the signal acceptance for the

eejj search was calculated for a grid of points in the
(mWR

,mNR ) plane using MC simulation. The electron
identi�cation e�ciency was determined from Z ! ee

data. Example signal e�ciencies for the no mixing
case are (15.0 � 1.7), (10.1 � 1.4) and (1.0 � 0.4)%
for (mWR

,mNR ) = (650,200), (400,350) and (400,50)
GeV/c2, respectively. For the large mixing case the
corresponding e�ciencies are lower due to the smaller
NR ! eqq branching fraction. Also, for the large mix-
ing case the search was restricted to mNR � 90 GeV/c2

since the e�ciencies vanish when mNR � mW due to a
threshold e�ect.
Given no observed excess of events beyond the ex-

pected background, we set a 95% CL upper limit on �B
using a Bayesian approach [17] with a at prior distri-
bution for the signal cross section. The uncertainties on
the overall e�ciency (10{20%), the integrated luminos-
ity (5.5%), and the background estimation (25%) were
included in the limit calculation with Gaussian prior dis-
tributions. The resulting background subtracted upper
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limit is plotted in Fig. 2, while Fig. 4 shows the excluded
region of the (mWR

,mNR ) plane for the no mixing case.
In conclusion, no evidence for the production of right-

handed W bosons was found. From a peak search we set
mass limits independent of the NR decay: mWR

> 650
GeV/c2 andmWR

> 720 GeV/c2 at the 95% CL, valid for
mNR < 1

2
mWR

and mNR � mWR
respectively, assuming

SM coupling (gR = gL and V R = V L). Also from the
peak search, we set a mass limit of mW 0 > 720 GeV/c2

at the 95% CL, extending the previous most stringent
limit for heavy left-handedW bosons [4] which decay into
e�. In addition, limits on mWR

valid for larger values
of the NR mass were obtained assuming that the NR

decays to an electron and two jets. Figure 5 summarizes
the results of the two methods used for the search as an
exclusion region in the (mWR

,mNR ) plane. These limits
on mWR

place stringent, though model dependent, limits
on possible V + A couplings.
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